Transverse Spin Results From STAR

Yuxi Pan

Department of Physics & Astronomy University of California, Los Angeles

2014 RHIC & AGS Annual Users Meeting

- STAR's capabilities on transverse spin measurements
- Status of STAR transverse spin analyses
- STAR upgrades

STAR's capabilities on transverse spin measurements

Detector capabilities

- ullet Central Region (-1 $<\eta<$ 1): π^\pm /K/p ID by dE/dX and TOF, e^\pm/γ by EMCAL, jets
- Mid-Forward (1 $< \eta <$ 2): π^0 , η , direct γ , EM-jets from Endcap-EMCAL
- Forward (2.5 $< \eta <$ 4.0): π^0 , η , EM-jets by Forward Meson Spectrometer

STAR's capabilities on transverse spin measurements

Central Region $(-1 < \eta < 1)$

- inclusive jet A_N, Collins/IFF asymmetries A_{UT}
- W^{\pm}/Z^0 boson A_N

Mid-Forward (1 $< \eta <$ 2)

• π^0 , η , EM-jets A_N

Forward (2.5 $< \eta <$ 4.0)

- \bullet π^0 , ηA_N
- topology dependence of A_N through EM-jet/ π^0 , forward-forward/forward-central correlations

Mid-rapidity inclusive jet A_N Collins/IFF Asymmetries W^{\pm}/Z^0 boson A_N Forward π^0 /EM-jet A_N on FM:

- STAR's capabilities on transverse spin measurements
- Status of STAR transverse spin analyses
 - Mid-rapidity inclusive jet A_N
 - Collins/IFF Asymmetries
 - W^{\pm}/Z^0 boson A_N
 - Forward $\pi^0/\text{EM-jet }A_N$ on FMS
- STAR upgrades
 - refurbished FMS + Preshower
 - Forward tracking + calorimeter for 2020

Mid-rapidity inclusive jet A_N

- Corresponding parton-jet p_T lower by 0.6-1.4 GeV/c
- Sensitive to Sivers function

$$\Delta^N f_{a/A} \!\!\uparrow \, \otimes f_{b/B}$$

$$T_F^q(x,x) = -\int \sigma^2 \overrightarrow{p}_\perp \frac{\overrightarrow{p}_\perp^2}{M} t_{1T}^{\perp q}(x,\overrightarrow{p}_\perp^2)|_{SIDIS}$$

 Gluon-Gluon scattering dominates due to low x_T

- STAR's capabilities on transverse spin measurements
- Status of STAR transverse spin analyses
 - Mid-rapidity inclusive jet A_N
 - Collins/IFF Asymmetries
 - W^{\pm}/Z^0 boson A_N
 - Forward $\pi^0/\text{EM-jet }A_N$ on FMS
- STAR upgrades
 - refurbished FMS + Preshower
 - Forward tracking + calorimeter for 2020

Collins Asymmetries at 200 GeV

• 2-scale process described within TMD scheme by $h_1^2 \otimes f_{b/B} \otimes \Delta D_{\pi/q}$ ↑ assuming factorization

 2012 STAR data provide higher precision and reduced systematic uncertainties. Preliminary results aimed for SPIN2014

Collins Asymmetries at 500 GeV

- Moments of $\sin(\phi_s \phi_h)$ sensitive to quark Collins asymmetry
- Increased gluonic subprocess at $\sqrt{s} = 500$ GeV leads to small Collins asymmetries until large z_h

Collins Asymmetries at 500 GeV

- Moments of $\sin(\phi_s 2\phi_h)$ sensitive to linearly polarized gluons
- Gluon Collins-like asymmetries completely unconstrained

IFF Asymmetries for Di-hadron correlations

 Asymmetries persist in collinear scheme through

$$h_1^{a/A^{\uparrow}} \otimes f_{b/B} \otimes H_{1,ot}^{\measuredangle c/C}$$

First signal of transversity in pp collisions

IFF Asymmetry projections with 2012 STAR Data @ 200 GeV

Statistical uncertainties greatly reduced.

Analyses of 200 GeV and 500 GeV data are ongoing

Preliminary results aimed for SPIN2014

- STAR's capabilities on transverse spin measurements
- Status of STAR transverse spin analyses
 - Mid-rapidity inclusive jet A_N
 - Collins/IFF Asymmetries
 - W^{\pm}/Z^0 boson A_N
 - Forward $\pi^0/\text{EM-jet }A_N$ on FMS
- STAR upgrades
 - refurbished FMS + Preshower
 - Forward tracking + calorimeter for 2020

Sivers function

The sign change of Sivers function

Critical test for TMD factorization and evolutions

pp: qqbar annihilation repulsive ISI

Modified Universality

- Sivers_{SIDIS} = -Sivers_{DY} = -Sivers_{W \pm /Z⁰}
- lacktriangledown A_N^{γ} measures the sign change through Twist-3
- $A_{IIT}^{Sivers/SIDIS}$, A_N^{DY} and $A_N^{W^{\pm}/Z^0}$ together test TMD evolutions

W^{\pm} identification

- W^{\pm} identified via high p_T isolated electrons + p_T imbalance on the away-side
- 2011 500GeV pp collisions, $\mathcal{L} = 25pb^{-1}$

W^{\pm} kinematics reconstruction

- $P_T^W = -P_T^{recoil}$ (MC corrected)
- $P_Z^W = P_Z^e + P_Z^\nu$, neutrino P_Z calculated by $M_W^2 = (E_e + E_\nu)^2 (\overrightarrow{p_e} + \overrightarrow{p_\nu})^2$
- Neutrino P_T is reconstructed from missing P_T

Precoil corrected by MC to account for acceptance

Good agreement between data/MC after P_T correction

W^{\pm}/Z^0 boson A_N From 2011 STAR Data

W^{\pm}/Z^0 A_N Projections for 2016

- STAR's capabilities on transverse spin measurements
- Status of STAR transverse spin analyses
 - Mid-rapidity inclusive jet A_N
 - Collins/IFF Asymmetries
 - W^{\pm}/Z^0 boson A_N
 - Forward $\pi^0/\text{EM-jet }A_N$ on FMS
- STAR upgrades
 - refurbished FMS + Preshower
 - Forward tracking + calorimeter for 2020

Forward Meson Spectrometer

- Pb Glass calorimeter provides EM coverage in 2.5 $< \eta <$ 4.0
- small cells: 3.81x3.81cm²
 large cells: 5.81x5.81cm²
- detect π^0 , η and jet-like events

- Isolated π^0 from 2011 data shows flat p_T dependence
- Analysis of inclusive π^0 A_N is ongoing
- A successful twist-3 model (initial-/final-state, or both) would have to explain SSA in pp and SIDIS with the same set of parameters, plus evolutions

A_N for forward jet-like events

- Apply Anti-k_T jet finding on FMS photons, R = 0.7
- Isolated π⁰ has larger asymmetries than jet-like events

A_N for forward jet-like events

- Apply Anti-k_T jet finding on FMS photons, R = 0.7
- Isolated π⁰ has larger asymmetries than jet-like events
- Study dependence of A_N on number of photons and away-side jet activities

A_N for forward jet-like events

- Apply Anti- k_T jet finding on FMS photons, R = 0.7
- Isolated π⁰ has larger asymmetries than jet-like events
- Study dependence of A_N on number of photons and away-side jet activities

with and without a central EM-jet $p_T^{EMjet} > 2.0 \text{ GeV}$

A_N for forward jet-like events

- Apply Anti-k_T jet finding on FMS photons, R = 0.7
- Isolated π⁰ has larger asymmetries than jet-like events
- Study dependence of A_N on number of photons and away-side jet activities

with and without a correlated central EM-jet on the away-side $p_T^{EMjet} > 2.0 \text{ GeV}$

- STAR's capabilities on transverse spin measurements
- Status of STAR transverse spin analyses
 - Mid-rapidity inclusive jet A_N
 - Collins/IFF Asymmetries
 - W^{\pm}/Z^0 boson A_N
 - Forward $\pi^0/\text{EM-jet }A_N$ on FMS
- STAR upgrades
 - refurbished FMS + Preshower
 - Forward tracking + calorimeter for 2020

Direct γ with FMS + Preshower detector for Run15

- FMS lead glass was exposed to sunlight to recover from radiation damage
- ullet first two layers of preshower provides γ /charged-track separation and (x,y)
- \bullet 3rd layer of preshower separates electrons and γ from charged hadrons

Direct γ A_N for Run15

- $p^{\uparrow} + p @ \sqrt{s} = 200 \text{ GeV}, \mathcal{L} = 40pb^{-1}, pol. = 60\%$
- track matching between FMS and layer1 & 2 of preshower
- $E_{cluster} > 15 \text{ GeV}, p_T > 2.0 \text{ GeV}$

- STAR's capabilities on transverse spin measurements
- Status of STAR transverse spin analyses
 - Mid-rapidity inclusive jet A_N
 - Collins/IFF Asymmetries
 - W^{\pm}/Z^0 boson A_N
 - Forward $\pi^0/\text{EM-jet }A_N$ on FMS
- 3 STAR upgrades
 - refurbished FMS + Preshower
 - Forward tracking + calorimeter for 2020

Forward Tracking & Calorimeter System for 2020

- ECAL: W powder + scintillating filters σ_E / E = 0.11/ \sqrt{E} + 0.007
- HCAL: Lead plates + scintillating tiles σ_E / E = 0.58/ \sqrt{E} + 0.007
- Prototypes tested extensively at Fermilab

- GEM technology from FGT design
- Still in early stage of development

Summary

- STAR continues to deliver high quality transverse spin measurements for
 - Mid-rapidity jet A_N to probe gluon Sivers function
 - Mid-rapidity correlations to access transversity
 - W^{\pm}/Z_0 asymmetries to test TMD factorization & evolutions
 - A_N for forward hadron/jet-like events to shed light on the origins of the large transverse spin effects
- STAR upgrades in the (near-) future will enable new exciting measurements
 - Forward direct photon
 - Forward jet, di-hadrons...

Stay tuned!

Backup –2006 jet A_N , A_Σ and A_{TT}

